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ABSTRACT 

I 

Computer aided design of nonlinear differential systems require 

■any response calculations from the system model    x ■ F(x,u).    Many 

nonlinear systems, especially control systems, can be separated into 

a stiff linear part and a nonstiff nonlinear part.    Fast numerical 

integration techniques taking advantage of the partitioned form are 

presented. 

• 
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I.  INTRODUCTION 

Computer aided design of nonlinear differential systems requires 

many response calculations from the system model x ■ F(x,u) where 

x Is the state vector and u Is the control vector. Accurate models 

Include both short and long term effects, and thus have widely separated 

or stiff eigenvalues. For large stiff sets of equations the analysis 

takes excessive execution time as most Integration techniques 

(Including the Runge Kutta rules) require that the Integration time 

step be limited by the magnitude of the largest and possibly most 

uninteresting eigenvalues. 

Many nonlinear differential systems, especially control systems, 

• can be separated Into a linear and a nonlinear part of the form 

x • Ax + f(x,u)    where all the stiff eigenvalues are In the linear 

part represented by the matrix   A.    This partitioning is possible 

for most cases because the nonlinear equations usually describe the 

motion of the system to be controlled (e.g.  airplane, missile, hydro- 

foil, etc.) which has time responses much slower than those of the 

controlling sensors, compensators and actuators.    Further, most 

sensors,  compensators and fast actuators are designed to operate in 

a linear or almost linear region of their response curves.    Non- 

llnearltles, such as physical limits on actuator travel,  can most 

often be Incorporated Into the plant equation as Input saturation. 

Thus the  total system Including feedback which Is represented by 
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F(x,u) can be partitioned so that the large eigenvalues occur in the 

linear part. 

In the numerical response calculation for nonlinear differential 

systems, there are three types of errors to consider; truncation error, 

roundoff error, and error due to numerical instability of the integrating 

rule. Roundoff error can be controlled by use of sufficient word length 

and programming techniques such as inner-product accumulation. Truncation 

error is the one step error due to the discrete approximation to the 

integral. This error is a function of the integration rule, the time 

step size, and the state of the system. For a particular integration 

rule and step size, bounds for the truncation error can bt determined, 

however, actual truncation error can be significantly less depending 

on the state of the system. For example, if the state of the system 

is a stable singular point of the nonlinear equations, truncation 

error could be negligible. The third type of error, that arising 

from numerical instability of the integration rule, is often dis- 

missed because truncation error control schemes will normally force 

the step size small enough so that the integration rule is stable. 

For stiff systems this may cause an unreasonably large nuober of inte- 

gration steps to be required by some rules. 

Numerical stability of Integration rules [1,2] normally depends 

on the product of the maximum modulus eigenvalue (of the Jacobian) and 

the time step size T. For example, for a Runge Kutta fourth order rule 

|x max| T must be less than 2.8. Thus even though the truncation error 

might be negligible for larger step sizes, T must remain small to 

guarantee the computed solution does not grow without bound. 

The purpose cf this paper is to present several integration rules 

X 



'MMHIili      i in    iiitpi 

-3- 

whlch are stable over much larger regions than standard rules and 

thus allow the step size to be increased when the truncation error 

allows. For these rules, the region of numerical stability depends 

on the maximum modulus eigenvalue of the nonlinear part only, which 

due to partitioning may be orders of magnitude less than that of the 

composit system. 

11.  RESPONSE CALCULATION 

Transformation 

Assume a system of the form x - Ax + f(x,u) where stiff 

eigenvalues are only in the linear part A. Transforming the state 

variables, x - e y, gives a new set of nonstiff differential 

equations, y - G(y,u) obtained as follows, 

x - Ax + f(x,u) (1) 

AeAty + eAty - AeAty + f(eAty.u) (2) 

y - e"Atf(eAty,u) . (3) 

The dynamic eigenvalues of a nonlinear system are the eigen- 

values of ehe instantaneous Jacobian. The eigenvalues of the 

original system are the eigenvalues of A + f (x,u). The eigen- 

values of the transformed system are the eigenvalues of 

_    -At,    -At.      -At. /  v At /.v 
G"e  f-e  fx-e  f (x,u)e (4) 
y      y      x y      x 

Since    C      Is a similarity transformation of    f  ,    the eigenvalues of 

the transformed system,    G,    are the eigenvalues of the nonlinear part 

; 
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of the original system,    £. 

The transformed system of equations can be integrated by fast 

explicit integration techniques without requiring small time steps 

to prevent numerical instabilities due to stiff eigenvalues.    Inte- 

grating   y    over one time step,    t  ..  - t   " T,    gives nTx        n 

infl 
yn+l ' yn+   / G<y'u>dt <5) 

At xi Premul tip lying by    e   n+J-    gives the convoluuion integral sequential 

difference approximation to    x  ... 

tirfl 

s ,,  - ^V/       eA(tn+1't)  f(x,u)dt (6) 
n+1 

t. n 

Numerical stability is maintained by using either an exact analytic 

AT 
expression for e   or by using the numerically stable Fade approxl- 

AT 
matlons. Table 1 presents some synunetric Fade approximations to e . 

AT 
Numerical techniques for the analytical determination of e   using 

similarity transformations are similar to those presented in [3]. 

Table 1. Numerically stable symmetric Fade 
AT 

approximations to e . 

Order 

2    (I - yTA)"1 (I + ^TA) 

4   (I - |TA + ^A2)"1 (I + |TA + ^A2) 

6  (i - -ITA + ^T
2
A
2
 - ^AV1

 (I + ^TA + ^r
2A2 + ^T

3A3) 

8   (I - ±TA + |3T
2A2 - ^T3A3 + ^V)"^! + |TA + f^V 

' i-S* 
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The above transformed system of equations can be stably Inte- 

grated by any explicit Integration rule such as the Adams-Basforth 

multlstep rules. The Runge Kutta rules are used here because they 

are self starting and allow easier error detection and correction. 

Transformed Runge Kutta rules for order's 1, 2 and 4 are as follows: 

1 x .. - eAT[xn + T f(xn)] (7) 
n+i      n      n 

2 k - TeATf(x ) (8) 
n 

AT 
x , - e 
n+1 

x + ^T [e
AT f(xn) + f(e

ATx + k)] 
n  Z L     n        n    J 

k. - T f(x ) (9) 
i      n 

• ,, ,, »SAT   t 1 »iAT . N 
k2 - T f (e  xn + -j e   ^ 

k - T f (e^ + | kj 
3 n  2 2 

k. - T f(eATx + e1^1 kj 
H n       J 

Vl ■ eAT(xn + I kl) + ^ 1  (k2 + k3) + I kl 

Truncation Error 

An example stiff system of equations In a later section of this 

paper demonstrates how the transformed rules maintain numerical stability 

for large step sizes even though the truncation errors become large. 

For a linear system of equations, x ■ Cx, the truncation error for a 

p-th order Runge Kutta rule is 

e - x(t ) - x - —T-rrrr   x + 0(TP z) (10) 
n    n    n     ip+l;«  n 

For a transformed Rungc-Kutta »ule applied to    x ■ Ax + f -If- f ^ Rx. .   - .-., -  u 



MW 

■M 

-6- 

then the truncation error for a p-th order rule using a p- :h order 

Fade approximation is dominated by 

n KT^A1*1, (ID 

AT 
since ||A|| >> ||B||. If the approximation to e   Is of order 

greater than p then 

e    - KT^APBX    . n 
(12) 

.-1 For   T   much greater than    ||A||        the error gets large so that 

significant increases in   T    cannot he made. 

For example if    A   hai   eigenvalues like -1000 and    f     has 

eigenvalues like -1 then a standard Runge Kutta rule will require a 

time step of about .001 to maintain numerical stability.    The trans- 

formed method will be numerically stable for any step sice up to 1, 

but the truncation error can be like    Tr    10 P/(pM)!.    To control 

this truncation error   T    might still have to be kept small. 

Convolution Integral Partitioning 

When the stiff system of equations can be further partitioned 

so that part of the system has no stiff part as is shown in figure 1 

and equation 13, then low error convolution integral approximations 

can be made. 

i 

i 
X 
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Non Linear 
Non Stiff 

Linear 
Stiff Eigenvalves U. 

Figure 1.   DIAGRAM OF PARTITIONED SYSTEM 

fl(x1,x2,u1) 
1 

■ 

'o 0 xl" 
•f 

2, 
0 ^J X2j 

(13) 

LVWV 

Numerically stable,  low error Integration rules can be obtained by 

applying first  and second oftuer explicit one step end point approx- 

imations to the convolution integral representation of    x.. 

iH-1 x-       • e 
A2T^ *ft&l e^^n^l-')   f2(t)dt (14) 

This approximation to    x.    is coupled with compatible Runge Kutta 

rules to approximate    x,. 

A first order approximation to the convolution integral can be 

obtained by expanding    f.    about    t      and then integrating the ex- 

ponential term exactly. 

f7(x(t)) -  f, ♦ 0(T) 

l«*\ 
f ,M Wt)dt  .   -»   (eA2T . I)   «   I, 

(15) 

(16) 

, 
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The Integral    I.    Is well defined even if    A.    is not of full 

rank and can be calculated, as before, using stable Fade approxi- 

mations or evaluating exact analytical expressions.    Using 

equations  (13)  and  (16), equation (14) becomes 

x^1    - eA2Tx5 + I^U + 0(T2)   . (17) 

From a first order rule 

xj*1    - xj    + TfJ (18) 

Similarly to get a second order rule 

f2(x(t)) - f" ^ ^2   ''"Si1 f 0(T2) (19) 

^n^l 
j       aA2<tiH-l~t)[t-tnldt - ^2{yi ~ TI) " l: (20) 

t n 
n 

A first order approximation to    f.,    is needed so evaluating    f.    at 

x"        and    x"        from (17)  and  (18) gives a first order approximation 

,n+l to    f2    . 

in2 - f^1 -  fn
2    + 0(72) (21) 

Using equations  (19),   (20), and  (21) equation  (14) becomes 

xf1    - e^ + l^* + I2lff
1 - f^J/T + 0(T3) (22) 

)-;om a second order Runge Kutta rule 

xl        " xl      2" ^  1        1 ^    ' 
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where again f"   is evaluated at the first order points in 

equations (17) and (18). Equations (22) and (23) define a 

partitioned second order rule. 

Under the special circumstances when f- is a function of 

only x. and the Jacobian of f2 is readily available (such as 

when f0 is linear) then slightly better accuracy can be obtained by 

using the following approximation to f»: 

f^t)) - fl    + f^ f^ [t-tj + 0(T
2) (24) 

Now equation (22) takes the form 

n+1    AoT n . T -n . T -n ,n z-cv x2   - e 2 X2 + i^ + i^^ fi (25) 

Using (18)  and  (25)     f.        can be approximated to be used to define 

x"        in equation  (23).    Equations  (22)  and  (23)  define a partitioned 

second order rule when the Jacobian of    f.    is available. 

The truncation errors  for these partitioned rules are on the 

order of  the  truncation errors  for a system of equations with  eigen- 

values on the order of the eigenvalues of the nonlinear parts.     For 

example if    A-    has eigenvalues  like -1000 and    f.    and    f-    have 

eigenvalues  like -1  then the   truncation error will be  like    TP    /(p+1)!, 

To get 3 place accuracy with a first order rule    T    should be  about 

.04 and with a second order rule    T    should be about  .1. 

III.     EXAMPLE 

In order to illustrate the application of these solution 

techniques, consider a simple pendulum problem in which the angular 



tfmir*   r «^-«K,»,. 

. ■'■•■'.   . 

-10- 

rat« is mMurad and utad aa a signal to a torqua motor to provlda 

damping. Tha nonlinaar aquations dascrlblng the motion of the 

pendulum are 

ML 0(t) - -Mg sin e(t) + T(t)/L (26) 

where   M   !• the maas,    L    ii the length, and    T(t)    is the torque 

applied by the torque motor.    Let the dynamics of  the angle sensor 

be given by a first order lag with a time constant    1/T .    Likewise 

let the torque motor be represented by a first order lag with time 

constant    1/T .    To obtain the state equations,  let    x.    be    6, m 1 

x.    be    0,    x.    be the output of the angular rate sensor, and let 

x^    be the torque.    The equations of motion are then 

xl 

X2 

X3   " 

-g/L sin x. - x^/ML 

K T x» - T x, s s 2        s 3 

K   T   X,   -   T    x. . m m 3        in 4 

(27) 

For the purpose of this example, let    g/L    be    1.,    1/ML    « 0.5, 

T    - 1000.,    K    - 1.0,     T    - 50.,    and    K    - 3.0. s '      s m ra 

Now factor the system into the form 

0 1             0 
 [. 4  x  '. 

n ! -1000      ( 
.   0        150    -50J 

x2 
sin x^ 

1000 x. 
Z'.l?L      (28) 

- Ax + F. 
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Note that the Jacoblan of F for small x. Is 

r   0 1 0 0 

3F „ -1 0 0 -.5 
3x 0 1000 0 0 

0 0 0 0 

(29) 

which has eigenvalues of    0.0, 0.0, ±J1.0.    The eigenvalues of the 

composit system for small    x      are    -1000.08, -48.371, -.77484±j   .65818. 

For the example system of equations considered here some indi- 

cations of the acceptability of the suggested integration rules can be 

made.     Figure 2 is a plot of discretization error curves  for several 

rules.    The  log of the error versus  the log of the integration time 

step has  a slope which is equal to the order of the integration rule. 

Table 2 compares the number of significant figures of accuracy obtained 

for the Integrating rules at several time steps.    Also computer 

execution times are given. 

A fourth order Runge Kutta rule had high accuracy  for small step 

sizes, but it went unstable for acceptable step sizes.    An order two 

Runge Kutta rule went unstable for smaller step sizes.    The  trans- 

formed Runge Kutta rules remained stable for large step sizes but the 

accuracy was poor.    The partitioned methods gave acceptable accuracy 

for reasonable step sizes.    Using the Jacoblan technique gave about 

1 place better accuracy than the time derivative approximation technique, 

AT Using a Fade approximation to    e        instead of an exact expression did 

not degrade the accuracy much, but  in some problems this may cause loss 

of accuracy because large negative Fade exponents approach -1.   instead 

of 0.    The partitioned 2nd order rule allows Integration to acceptable 
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accuracy about 200 times faster than a standard 4th order Runge 

Kutta rule for this example. 

Table 2.    Number of significant  figures 

and timings for example. 

i 

* 

Integration rule/time step 

Order 4 Runge Kutta 

Order 2 Runge Kutta 

Order 2 transformed 

Order 2 partitioned 

Order 2 partitioned 
(with Fade approximation) 

Order 2 partitioned 
(with Jacobian) 

Execution time in seconds 
for all order 2 rules 
(360/44) 

IQ'3 

12 

unstable 

3 

6 

6 

30 

ID"2 

unstable 

unstable 

1 

4 

4 

5 

3 

lO"1 

unstable 

unstable 

0 

2 

2 

.3 

■ ..■» 
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10 -4 10"3   10"2   10"1 

Time Step Size 

Legend 

O Transformed 

D Partitioned 

® Partitioned 
( with Jacoblan) 

A Runge Kutta 

Figure 2.   INTEGRATION  ERROR CURVES 
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L IV.     CONCLUSIONS 

In many simulations where one or .1 percent accuracy is 

sufficient,   the larger step sizes  allowed by the low order stable 

\ integration rules reduces run tines appreciably.    Control systems 

for nonlinear plant» which use position and rate fsedback with 

compensation usually allow partitioning as Indicated in Eq.   13 with 
I 

f. being a function of x. and u only. Experience has shown the 

second order rule to be ideally suited for this problem. Where 

i 
acceleration feedback is used,    f.    now becomes a function of    x- 

in addition to    x.    and    u   which in some cases reduces the effective- 

ness of the Integration rule. 
i. 
i The rules presented here show advantages over other rules such 

as standard Runge Kutta only when the truncation errors of the p'^mary 
f 

variables are small enough to warrant larger step sizes.    Where the 

problem is truncation error limited, the higher order rules offer 

advantages in error control.     It should be noted that  in many simulations, 

however, errors due to numerical instabilities are the limiting factor. 

For these systems, stable integration rules can significantly reduce 

computation times. 

One obvious example where  these rules are particularly effective 

is in determining steady state operating conditions of nonlinear system«. 

Here,  large errors in the transient  solution can be tolerated nuklnR 

stable integration rules with  large step sizes quite desirable. 
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